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Abstract

The objective of the present paper is to aggregate Uzawa’s two-sector econ-
omy into Solow’s one-sector economy. We give a definition of aggregating econ-
omy and establish aggregation possibility theorems. A major problem in this
regard is how to obtain an aggregate production function and an aggregate com-
modity price. We present them in an explicit way. Furthermore, we present
a maximization problem that is equivalent with the temporary equilibria of
Uzawa’s two-sector model to prove that the defined aggregate production func-
tion is monotonous, linearly homogenous and concave.
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1 Introduction

The real economy is very much complicated. Economists hardly take hold of whole
economy itself. They usually have recourse to economic models to study the behavior
of an economy. They make use of n-consumers and m-producers general equilibrium
model, of two-sector growth model or of one-sector macro economic model according
to their objectives.

Economists, however, have hardly often scrutinized relations between models. For
example, we do not know the way how we reduce Uzawa’s two-sector model to Solow’s
one-sector model (see Uzawa (1963) and Solow (1956)). It is sometimes said that the
two-sector model is a general version of one-sector model. Is this intuition right? Our
question is here. That is, we say that two-sector model is more general than one-
sector model safely when we can aggregate two sector-model to one-sector model in a
consistent way. We face with two problems in resolving this question. (P1) We need
to find an aggregate production function for aggregated commodity. (P2) We need to
have a price of aggregated commodity.

The problem (P1) to obtain an aggregate production function is classical and now
abound in literature known as Cambridge Controversy, which are surveyed and sum-
marized in Felipe and Fisher (2003) and Fisher (1993). In Cambridge Controversy,
they have basic common plan to construct an aggregate production function from
purely informations on production technologies. As a result of long period of discus-
sions, we are forced to stand no chance of making use of the aggregate production
function. That is, very limited class of production functions, e.g., a class consisting of
an identical function, can be consistent with aggregate production function. Finally,
Felipe and McCombie (2013) depicts this situation as that the aggregate production
function is ‘not even wrong’.

On the other hand, Baquee and Farhi (2019) presents an aggregate production
function from a new angle, that is, from the allcational efficiency point of view. Their
way of constructing aggregate production function follows next steps:

(step 1) Assume that there exists an “aggregator”, a non-negative valued function
whose variables are total consumption goods.

(step 2) Maximize the value of aggregator under the resourse constraints to find an
efficient allocation in an aggregative sense.

(step 3) The maximizing solution consists of the quantities of consumption goods,
each of which is a function of the quantity of primary factors of production, i.e.,
capitals and labors.



(step 4) Finally, substituting obtained functions into the aggregator gives an aggregate
production function.

This method is successful in the sense that it permits the wide varieties of production
technologies. Baquee and Farhi (2019), however, remains some questions unanswered.
First, they do not give a concrete functional form of ‘Aggregator’. Second, they do
not give the price of aggregate product. This is nothing but the problem (P2) above.

Recently, to these problems, Doi, Fujii, Horie, Iritani, Sato and Yasuoka (2021)
gives an affirmative answer by way of Cobb-Douglas example. They aggregate two-
sector economy into one-sector economy in a temporary equilibrium setting. They
show aggregate possibility results which are summarized as follows.

R1 The aggregate production function takes the form of
∏2

i=1 (Fi/αi)
αi , when Fi, i =

1, 2 are production functions of sectors. The coefficients α1 and α2 are assumed
to be constants which represent the ratios of spending on the i-th commodity to
total income of the two-sector economy.

R2 The price of aggregated commodity is represented as a geometric mean of indi-
vidual prices.

We extend the model with restrictive Cobb-Douglas production functions by Doi,
Fujii, Horie, Iritani, Sato and Yasuoka (2021) into that with general neoclassical pro-
duction functions. In the present paper, we concentrate ourself to the temporary
equilibrium since we want to treat an aggregation problem as simple as possible. We
present a definition of aggregating economy and establish two aggregation possibility
theorems. One theorem is for the existence of the aggregated commodity price and
that of the aggregate production function. The other theorem is for the aggregation
Uzawa-economy to Solow-economy.

The present paper consists of two parts. In the first part, we define the aggregation
of two-sector economy into one-sector economy and search a candidate of aggregate
price and that of aggregate production function. This part is given in Section 3. In
the second part, we show that obtained candidates are those that we want to get. In
this step, we make most use of the contribution by Baqaee and Farhi (2019). The
key concept of Baqaee and Farhi (2019) is the Aggregator function. We employ as
an Aggregator function the candidate of aggregate production function obtained in
the first part. This bring in three important results. One is that we can describe
Uzawa’s temporary equilibrium as a simple maximization problem. Another is that
the Uzawa’s temporary equilibrium turns out to be unique. The other is that we
can establish aggregation possibility theorems. We emphasize that the results 1 and
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2 above still hold in the general setting. These are characteristic features of our
possibility theorems. The second part is given in Sections 4 and 5.

We propose a new definition of an aggregate production function in this paper.
Suppose that the exists a production function under which the total demand for factors
are the solution to the profit maximization problem. We call this production function
as an aggregate production function. We will give a precise definition of aggregation
in section 3.1 and prove possibility of aggregation in Section 5.

2 Two-Sector Model

In this section, we introduce a basic notations and concepts in the present paper.

2.1 Notations, Assumptions and Uzawa-economy

Our starting point is a temporary equilibrium in two-sector model presented by Uzawa
(1963). The producer i, or the i-th sector, produces product Yi by employing capital
Ki and labor Li, i=1,2. A function Fi denote the i-th sector’s production function.
That is1,

Yi = Fi(Ki, Li), (Ki, Li) ∈ R2
+, i = 1, 2.

Assumption 1 We assume each production function Fi satisfies following conditions
A1, A2, A3, and A4, i = 1, 2.

A1 Each production function Fi is twice continuously differentiable, concave and
homogenous of degree one.

By homogeneity of Fi, we can represent per capita production function by fi(ki),
where fi(ki) = Fi(ki, 1) and ki = Ki/Li.

A2 For any positive Ki, Li, it holds that Fi(0, Li) = Fi(Ki, 0) = 0, i = 1, 2.

A3 Fi is twice continuously differentiable with respect to (Ki, Li) ∈ R2
++ and satisfies:

∂Fi

∂Li

> 0,
∂Fi

∂Ki

> 0,
∂2Fi

∂Li
2 < 0,

∂2Fi

∂Ki
2 < 0, i = 1, 2.

1The symbols R2
+ and R2

++ represent a nonnegative orthant and a positive orthant in two dimen-
sional Euclid space R2, respectively.
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A4 Fi is well-behaved, that is, has a following property:

lim
ki→0

fi
′(ki) = ∞ and lim

ki→∞
fi

′(ki) = 0, i = 1, 2.

The following property on a production function hold.

Lemma 1 Suppose that a production function Fi(Ki, Li) satisfies (A1)–(A4), then
Fi(Ki, Li) is strictly concave without along the path from the origin in the domain.

The proof of Lemma 1 is relegated to Mathematical Appendix.

We model the demand side of the economy as simply as possible after Uzawa (1963).
That is, we assume the amount of the expenditure on commodity i is proportional to
income. The rates are represented by two positive constants α1 and α2 satisfying α1+
α2 = 1. We call these expenditure coefficients. The demand for commodity i is αi× I,
when I is a national income. The primary factors, capital K and labor L are endowed
with an economy. Of course, K and L are positive. Let Fi be a production function
of the sector i satisfying Assumption 1, i = 1, 2. A triplet ((K,L), (Fi)

2
i=1, (αi)

2
i=1) is a

Uzawa-economy. In what follows, we measure prices by the rental rate of capital. Let
ω and pi, i = 1, 2 be the wage rental ratio and the commodity i’s price rental ratio,
respectively.

Definition 1 (Uzawa’s Temporary Equilibrium) Suppose that a Uzawa-economy
((K,L), (Fi)

2
i=1, (αi)

2
i=1) is given. A pair of a price vector and an allocation ((ω∗, (p∗i )

2
i=1),

(Y ∗
i , K

∗
i , L

∗
i )

2
i=1) is the Uzawa temporary equilibrium if and only if the pair satisfies fol-

lowing two conditions (U1) and (U2).

(U1) (Y ∗
i , K

∗
i , L

∗
i ) is a solution to the problem:

max
Yi,Ki,Li

p∗iYi −Ki − ω∗Li subject to Yi = Fi(Ki, Li), i = 1, 2. (1)

(U2) Factors and commodities markets are in balance.

equilibrium of primary factors

{
K∗

1 +K∗
2 = K

L∗
1 + L∗

2 = L,
(2)

equilibrium of commodities

{
α1(K + ω∗L) = p∗1Y

∗
1

α2(K + ω∗L) = p∗2Y
∗
2 .

(3)

4



The condition (U1) implies that commodity i’s supply Y ∗
i and demands for factors

K∗
i , L

∗
i are determined by firm’s profit maximization behavior, i = 1, 2. The equation

(2) in (U2) implies that each factor market is in balance. The amount of demand for
the commodity i is αi(K + ω∗L) and the amount of supply is p∗iFi(K

∗
i .L

∗
i ). Then (3)

implies that the market of commodity i is in equilibrium.

2.2 Profit Maximization and Marginal Conditions

Arranging marginal conditions for profit maximization of the i-th sector, we have

ω =
fi(ki)

fi
′(ki)

− ki. (4)

Denote the right hand side of (4) by a function ϕi(ki) and we have

lim
ki→0

ϕi(ki) = 0, lim
ki→∞

ϕi(ki) = ∞,

since the production function is well behaved. Furthermore, it holds that

ϕi
′(ki) = −fi(ki)fi

′′(ki)

fi
′(ki)

2 > 0.

This implies that ϕi is strictly increasing and its infimum is zero and its supremum
is infinity. We have unique capital-labor ratio corresponding to a wage rental ratio
ω > 0. This functional relation is expressed by a function ki(ω), which satisfies

lim
ω→∞

ki(ω) = ∞, lim
ω→0

ki(ω) = 0. (5)

The implicit function theorem assures us of the differentiability of ki(ω) with respect
to ω. And thus we know:

ki
′(ω) =

1

ϕi
′(ki(ω))

> 0, i = 1, 2. (6)

The equation (4) implies:

pi(ω) =
1

fi
′(ki(ω))

, ω =
fi(ki(ω))

f ′
i(ki(ω))

− ki(ω).
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The first equality implies that ω determines pi. The second equality is an identity
which is rearranged again as follows:

1

ω + ki(ω)
=
f ′
i(ki(ω))

fi(ki(ω))
.

Multiplying 1 + k′i(ω) to both sides, we know:

1 + k′i(ω)

ω + ki(ω)
=
f ′
i(ki(ω))

fi(ki(ω))
+
f ′
i(ki(ω))

fi(ki(ω))
k′i(ω).

This is a differential equation. And thus we have:∫
1

ω + ki(ω)
dω =

∫
f ′
i(ki(ω))

fi(ki(ω))
dω = log(ω + ki(ω))− log fi(ki(ω)) + Ci, (7)

where Ci is a constant. The equation (7) will turn out to be a key by which we can
find a candidate of an aggregate production function.

2.3 Temporary Equilibrium

Functions ki(ω), pi(ω), i = 1, 2 are those defined in the previous sections. Let us define
factor demands by use of equilibrium condition of commodities (3). Let ω be a positive
real. We determine Li(ω), i = 1, 2 so as to satisfy next equation:

αi(k + ω)L = pi(ω)fi(ki(ω))Li(ω), i = 1, 2, (3′)

where k = K/L. By marginal condition for maximization, we can eliminate the term
pi(ω) in (3′) and rewrite (3′) to

αi(k + ω)L =
fi(ki(ω))Li(ω)

f ′
i(ki(ω))

= (ω + ki(ω))Li(ω), i = 1, 2.

And then, K1(ω) and K2(ω) are determined by L1(ω) and L2(ω). That is,

Li(ω) = αi
k + ω

ki(ω) + ω
L, i = 1, 2, (8)

Ki(ω) = ki(ω)Li(ω), i = 1, 2. (9)

Now, we have ((ω, (pi(ω))
2
i=1), (Ki(ω), Li(ω))

2
i=1) as functions of ω. Finally, from (8)

and (9), we have an identity:

2∑
i=1

(Ki(ω) + ωLi(ω)) = K + ωL. (10)
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This is the Walras’ law. That is, the equilibrium of labor market implies that of capital
market.

Now, let us define

ρi(ω) =
Li(ω)

L
= αi

k + ω

ki(ω) + ω
, i = 1, 2. (11)

The equilibrium in labor market is represented by an equation:

ρ1(ω) + ρ2(ω) = 1.

We know the facts that ki(ω) is strictly increasing and has the zero infimum and
the infinite supremum. Note that k in numerator of (11) is positive constant. Then
we have ρi(ω) > αi, i = 1, 2 for a sufficiently small ω and have ρi(ω̄) < αi, i = 1, 2 for
a sufficiently large ω̄. The intermediate-value theorem assures us of the existence of
ω∗ which equates the demand and the supply of labor. This shows the existence of
temporary equilibrium of Uzawa-economy ((K,L), (Fi)

2
i=1, (αi)

2
i=1).

Let a pair ((ω∗, (pi(ω
∗))2i=1), (Y

∗
i , K

∗
i , L

∗
i )

2
i=1) be a Uzawa temporary equilibrium.

Then, we have following interesting equalities in equilibrium.

p1(ω
∗)α1p2(ω

∗)α2

(
F1(K

∗
1 , L

∗
1)

α1

)α1
(
F2(K

∗
2 , L

∗
2)

α2

)α2

= K + ω∗L

= p1(ω
∗)F1(K

∗
1 , L

∗
1) + p2(ω

∗)F2(K
∗
2 , L

∗
2). (12)

The equality (12) will play an important role in Section 5.

2.4 A Sufficient Condition for Comparative Statics

We are going to prepare a condition by use of which we can describe responses of
endogenous variables when exogenous parameters (K,L) vary. The condition will
support the differentiability of endogenous variables. The wage rental ratio ω∗ which
equilibrates the labor markets is the solution to the following equation.

α1
k + ω

k1(ω) + ω
+ α2

k + ω

k2(ω) + ω
= 1.

We define left hand side as a function ψ(ω, k) of ω and k. Thus we have

ψω =
∂ψ

∂ω
(ω, k) =

2∑
i=1

αi
ki(ω) + ω − (k + ω)(k′i(ω) + 1)

(ki(ω) + ω)2
.
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A sufficient condition for ω∗ to be unique is

ψω(ω, k) < 0 for ω = ω∗. (13)

Under (13), we can write equilibrium ω(k) = ω∗ as a function of k by implicit function
theorem. Note that the function ω(k) is differentiable at the same time. And thus,
the equality ψ(ω(k), k) = 1 is an identity with respect to k. Therefore, we have

ψωω
′(k) + ψk = 0, ψk

(
def
=
∂ψ

∂k

)
=

2∑
i=1

αi

ki(ω) + ω
=

1

k + ω
> 0.

Finally, we get to a starting point for comparative statics:

dω

dk
(= ω′(k)) = −ψk

ψω

> 0,
dki
dk

=
ω′

ϕ′
i

> 0, i = 1, 2.

3 Aggregation

In this section we are to define the aggregation of a Uzawa-economy to a Solow-
economy and then to obtain possible candidates of a price of aggregate commodity
and an aggregate production function.

Let a triplet ((K,L), (Fi)
2
i=1, (αi)

2
i=1) be a Uzawa-economy. Let us consider an

economy with one commodity and two factors, i.e., capital and labor. Let ((K,L), F )
be a one-sector economy, where (K,L) is identical with the factor endowments in the
Uzawa-economy and where F (K̃, L̃) is a linearly homogenous, concave, and differen-
tiable production function. The pair ((K,L), F ) defines a Solow-economy. Let us
define the temporary equilibrium of the Solow-economy.

Definition 2 (Solow’s temporary Equilibrium) Let ((K,L), F ) be a Solow-economy.
A pair of price vector and allocation ((ω̂, p̂), (Y,K,L)) is a Solow temporary equilib-
rium if and only if the pair satisfies following conditions (S1) and (S2).

(S1) (Y,K,L) is a solution to the problem:

max
Ỹ ,K̃,L̃

p̂Ỹ − K̃ − ω̂L̃ subject to Ỹ = F (K̃, L̃).

(S2) The demand and supply for commodity are in balance. That is,

K + ω̂L = p̂F (K,L) = p̂Y.
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Solow (1956) assumes the saving ratio s is constant, then s(K + ω̂L) is the demand
for investment and (1 − s)(K + ω̂L) is the demand for consumption. And thus, (S2)
is the equality between demand and supply for commodity. The condition (S2) holds
whenever (S1) holds, by Euler’s theorem. Constants s and 1 − s in the Solow model
correspond to α1 and α2 of the Uzawa-economy.

The necessary condition for (S1) is

p̂f ′(k) = 1, ω̂ =
f(k)

f ′(k)
− k, where f(k) = F (k, 1), k =

K

L
.

Since F is concave, the condition is a sufficient condition for the maximization.

3.1 Definition of Aggregation

Let ((K,L), (Fi)
2
i=1, (αi)

2
i=1) be a Uzawa-economy. Let (ω, (pi(ω))

2
i=1) for ω ∈ R++

be the price vector. Let Ki(ω), Li(ω), i = 1, 2 be factor demand functions in the
Uzawa-economy. Total demands for factors are denoted by K(ω) and L(ω).

Definition 3 (Aggregate commodity prices and production) Two functions p(ω)
and F (K̃, L̃) are said to be a price of aggregated commodity and an aggregate
production function respectively if and only if these functions satisfy conditions (a)
and (b) below.

(a) [Aggregative Producer] F (K̃, L̃) is differentiable, linearly homogenous, and
concave. For an arbitrarily given ω, (K(ω), L(ω)) is a solution to the maximiza-
tion problem:

max
K̃,L̃

p(ω)F (K̃, L̃)− K̃ − ωL̃.

(b) [Conservation of product value]. The following equality is an identity with
respect to ω.

p(ω)F (K(ω), L(ω)) = p1(ω)F1(K1(ω), L1(ω)) + p2(ω)F2(K2(ω), L2(ω)).

We call a pair of functions (p(ω), F (K̃, L̃)) an aggregate pair. Note that conditions
(a) and (b) in Definition 3 describe desirable properties that we claim to the aggregate
pair if such exist.
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Definition 4 (Aggregation of economy) The Uzawa-economy ((K,L), (Fi)
2
i=1,

(αi)
2
i=1) is said to be aggregated into a Solow-economy ((K,L), F ) if and only

if (p(ω), F (K̃, L̃)) is the aggregate pair satisfying conditions (a) and (b) in Definition
3 and besides the Uzawa temporary equilibrium ((ω∗, (pi(ω

∗))2i=1), (Y
∗
i , K

∗
i , L

∗
i )

2
i=1) and

a pair ((ω∗, p(ω∗)), (Y,K,L)) satisfy conditions (c) and (d).

(c) Following equalities hold.

K(ω∗) = K, L(ω∗) = L, Y = F (K,L).

(d) The pair of price and aggregate allocation ((ω∗, p(ω∗)), (Y,K,L)) is a Solow tem-
porary equilibrium in the Solow-economy ((K,L), F ), where Y = F (K,L).

The condition (d) in Definition 4 may be repetitive. We, however, dare to demonstrate
(d) since it is an important condition. The condition (c) together with (b) implies that

p(ω∗)Y = p1(ω
∗)Y ∗

1 + p2(ω
∗)Y ∗

2 .

Assume that there exists an aggregate pair (p(ω), F ) satisfying conditions (a) and
(b) in Definition 3. Since F is differentiable, linearly homogenous, and concave and
since (K(ω), L(ω)) is an inner solution to the problem in (a), the maximization in (a)
is equivalent to the following equations.

p(ω)
∂F

∂K
(K(ω), L(ω)) = 1, p(ω)

∂F

∂L
(K(ω), L(ω)) = ω.

Define f(k̃) = F (k̃, 1), k(ω) = K(ω)/L(ω) where k̃ = K̃/L̃. Then the above equations
are equivalent to

p(ω)f ′(k(ω)) = 1,
f ′(k(ω))

f(k(ω))
=

1

k(ω) + ω
.

And thus, we obtain an equality corresponding to (7).

3.2 Candidate of Aggregate Pair satisfying (a) and (b)

In this subsection, we are to find a possible aggregate pair. That is, we assume that
there exist p and F satisfying conditions (a) and (b) to search possible forms of p and
F . A candidate of (p, F ) is obtained in the following theorem.
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Theorem 1 Let ((K,L), (Fi)
2
i=1, (αi)

2
i=1) be a Uzawa-economy. Let ((ω∗, (pi(ω

∗))2i=1),
(Y ∗

i , K
∗
i , L

∗
i )

2
i=1) be the Uzawa temporary equilibrium. Suppose that the Uzawa tempo-

rary equilibrium is unique. If there exists an aggregate pair (p(ω), F (K̃, L̃)) satisfying
conditions (a) and (b) in Definition 3, then following two equalities hold:

p(ω∗) = (p1(ω
∗))α1 (p2(ω

∗))α2 , (14)

F (K,L) =

(
F1(K

∗
1 , L

∗
1)

α1

)α1
(
F2(K

∗
2 , L

∗
2)

α2

)α2

. (15)

The proof of Theorem 1 is given in Appendix. Note thatK∗
i , L

∗
i , i = 1, 2 in the right

hand side of (15) depend onK,L and thus (15) is represented as a function F (K,L). It
is easy for us to prove that (14) holds when we have the aggregate production function
F as indicated in (15). The equation (12) together with (15) leads us to

p1(ω
∗)α1p2(ω

∗)α2F (K,L) = p1(ω
∗)F1(K

∗
1 , L

∗
1) + p2(ω

∗)F2(K
∗
2 , L

∗
2).

This equality and the condition (b) in Definition 3 lead us to (14).
Note that we obtain equations (14) and (15) as a necessary condition for the ag-

gregate pair satisfying conditions (a) and (b). On the other hand, we have not shown
that the condition (a) hold for any ω and that the function (15) is concave and lin-
early homogenous. In the following Section, we shall show that (15) is the aggregate
production function.

Cobb Douglas example Doi, Fujii, Horie, Iritani, Sato and Yasuoka(2021) gives
an example of (15). Suppose that each sector i has a production function of

Fi(Ki, Li) = AiKi
θiLi

1−θi ,

where Ai and θi denote sector i’s TFP and the capital share rate (0 < θi < 1) respec-
tively, i = 1, 2. Define θ and A as follows:

θ = α1θ1 + α2θ2,

A =
2∏

i=1

(
Aiθi

θi(1− θi)
1−θi

θθ(1− θ)1−θ

)αi

.

The formula (15) in this example is

F (K,L) = AKθL1−θ.

In this case, the candidate of aggregate production function obtained here is linearly
homogenous, concave, and differentiable.
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4 Aggregate Pair

We have found a possible candidate of aggregate production function in Theorem 1.
In this section, we present functions p and F and establish properties of F that are
required for the aggregate production function. In order to attain the goal, we give a
new presentation for the temporary equilibrium of Uzawa-economy.

4.1 Temporary Equilibrium – a New Presentation –

Our main objectives of this subsection is to achieve two theorems. One is the equiv-
alence theorem (Theorem 2, below). By this theorem, we can give another full-length
portrait of the Uzawa temporary equilibrium by a simple problem (16) below. The
other is the uniqueness theorem (Theorem 3, below) which shows that the Uzawa
temporary equilibrium is unique.

Let ((K,L), (Fi)
2
i=1, (αi)

2
i=1) be a Uzawa economy. Let us define an artificial maxi-

mization problem such as follows:

max
yi,Ki,Li

(
y1
α1

)α1
(
y2
α2

)α2

subject to

{
K1 +K2 ≦ K, L1 + L2 ≦ L,

yi ≦ Fi(Ki, Li), i = 1, 2.
(16)

It is Baqaee and Farhi (2019) who introduced this type of problem to obtain an ag-
gregate production function. Their key concept is their objective function D0, the ag-
gregator function, variables of which are net products. Maximizing D0 under resource
constraints gives each endogenous variable a functional form of exogenous parameters.
Finally, D0 can be regarded as the function of parameters, e.g., endowments of primal
factors. This is their aggregate production function. Baqaee and Farhi (2019) remains
unanswered a concrete form of D0 and do not try to construct an aggregate economy.
Now, we have a possible form of aggregate production function as in (15) in Theorem
1. Then we employ this type of objective function (y1/α1)

α1 (y2/α2)
α2 for that in (16).

Let A be a set of all (yi, Ki, Li)
2
i=1 satisfying constraints in (16). The set A rep-

resents the attainable set of the Uzawa-economy and is convex and compact. Sets
A(K,L) and A(y) denote projections from A to (Ki, Li)

2
i=1-plane and (y1, y2)-plane

respectively. A(y) is so called a downside area of the transformation curve. The set
A(y) is also a convex compact set. We can observe that an upper contour set of the
objective function in (16) is a strictly convex set in R2

++. Therefore next Lemma is
obvious.

Lemma 2 A solution to the problem (16) exists and is an inner solution.

12



The Lagrangian of the problem (16) is

L =

(
y1
α1

)α1
(
y2
α2

)α2

+
2∑

i=1

λi(Fi(Ki, Li)− yi)

+ µ(K −K1 −K2) + δ(L− L1 − L2).

The Kuhn-Tucker condition associating with (16) is a following set of equations:

αi
(y1/α1)

α1(y2/α2)
α2

yi
− λi = 0, i = 1, 2 (17)

λi
∂Fi

∂Ki

− µ = 0, i = 1, 2 (18)

λi
∂Fi

∂Li

− δ = 0, i = 1, 2 (19)

Fi(Ki, Li)− yi = 0, i = 1, 2 (20)

K −K1 −K2 = 0, L− L1 − L2 = 0. (21)

Let (y∗∗i , K
∗∗
i , L

∗∗
i )2i=1 be the solution to (16). Substituting (y∗∗1 , y

∗∗
2 ) to (y1, y2) in (17),

we have values of λi, i = 1, 2, and sequentially, we have µ from (18) and δ from (19).
Clearly, the allocation (y∗∗i , K

∗∗
i , L

∗∗
i )2i=1 satisfies (20) and (21).

Theorem 2 (Equivalence Theorem) The Uzawa temporary equilibrium is equiva-
lent to the solution to (16). That is to say, following conditions (i) and (ii) hold.

(i) Let ((ω∗, (p∗i )
2
i=1), (Y

∗
i , K

∗
i , L

∗
i )

2
i=1) be the Uzawa temporary equilibrium. Define

p∗ = p∗1
α1p∗2

α2 (22)

λi =
p∗i
p∗
, i = 1, 2, µ =

1

p∗
, δ =

ω∗

p∗
. (23)

Then the pair ((λ1, λ2, µ, δ), (Y
∗
i , K

∗
i , L

∗
i )

2
i=1) is a solution to the system (17),

(18), (19), (20) and (21). Furthermore, the allocation (Y ∗
i , K

∗
i , L

∗
i )

2
i=1 is a solu-

tion to the problem (16).

(ii)　 Let ((λ1, λ2, µ, δ), (y
∗∗
i , K

∗∗
i , L

∗∗
i )2i=1) be a solution of Kuhn-Tucker condition

associating with (16). Define

ω∗ =
δ

µ
, p∗i =

λi
µ
, i = 1, 2, (24)

and the pair ((ω∗, (p∗i )
2
i=1), (y

∗∗
i , K

∗∗
i , L

∗∗
i )2i=1) is the Uzawa temporary equilibrium.

13



Theorem 2 is proven in Appendix.
This theorem establishes the equivalence between the Uzawa temporary equilibrium

and the solution to (16). It is noteworthy that p∗ in (22) is identical with (14). The
theorem 2 is the new knowledge in the theory of two-sector growth model (see, e.g.,
Burmeister and Dobell (1970)).

Our next objective is to establish the uniqueness of the solution to (16).

Theorem 3 Suppose that a Uzawa-economy ((K,L), (Fi)
2
i=1, (αi)

2
i=1) is given. The

solution to the problem (16) is unique, therefore, the Uzawa temporary equilibrium is
also unique.

The proof is relegated to Appendix.
Let a pair ((ω∗, (p∗i )

2
i=1), (Y

∗
i , K

∗
i , L

∗
i )

2
i=1) be the unique temporary equilibrium of a

Uzawa-economy ((K,L), (Fi)
2
i=1, (αi)

2
i=1). And let (ω, (pi(ω))

2
i=1) be a price vector for

ω ∈ R++ satisfying p∗i = pi(ω
∗), i = 1, 2. And thus, we can define functions p(ω) and

F (K,L) as :

p(ω) = (p1(ω))
α1 (p2(ω))

α2 , (25)

F (K,L) =

(
F1(K

∗
1 , L

∗
1)

α1

)α1
(
F2(K

∗
2 , L

∗
2)

α2

)α2

. (26)

By this definition and (12) we have a local version of the condition (b) hold, i.e.,

p(ω∗)F (K,L) = p1(ω
∗)F1(K

∗
1 , L

∗
1) + p2(ω

∗)F2(K
∗
2 , L

∗
2). (27)

In following sections, we shall show that (25) and (26) constitute the aggregate pair
satisfying conditions (a) and (b).

4.2 Differentiability

We have now two ways of finding the Uzawa temporary equilibrium. One is presented
in Section 2.3 and the other in Section 4.1. The dependency relationships of variables
are different in each way.

In the way presented in Section 2.3, dependency relationships of variables is de-
picted in the following format:

(K,L)
labor market−→ ω

(4)−→ (ki, pi)
2
i=1

(9), (10)−→ (ρi, Ki, Li)
2
i=1

Fi−→ (Yi)
2
i=1.

On the other hand, the way developed in Section 4.1 is very simple. Every variable is
obtained as a function of (K,L) by the maximization problem (16). To distinguish the

14



dependency relationships of variables determined in (16) from those in Section 2.3, we
write functions by using brackets as follows:

Ki[K,L], Li[K,L], Yi[K,L], i = 1, 2.

By Theorem 3, we have identities:
ki(ω(K/L))ρi(ω(K/L))L = Ki[K,L], i = 1, 2

ρi(ω(K/L))L = Li[K,L], i = 1, 2

Yi(Ki(ω(K/L)), Li(ω(K/L))) = Fi(Ki[K,L], Li[K,L]) = Yi[K,L], i = 1, 2.

(28)

Functions in the left hand side of (28) are those obtained in Section 2.3, and functions
in the right hand side those in (16). And thus, we have an identity such that

F (K,L) =
2∏

i=1

{
fi(ki(ω(K/L)))Li(ω(K/L))

αi

}αi

=
2∏

i=1

(
Fi(Ki[K,L], Li[K,L])

αi

)αi

.

(29)

Differentiability of “functions with brackets” are assured by the condition that the
Jacobian determinant of the systems of Kuhn Tucker condition does not vanish. On
the other hand, differentiability of “functions with parentheses” is assured by assuming
(13) since differentiating these variables is an operation which is comparative statics
intrinsically. We can differentiate “functions with brackets” under assumption (13)
because equalities in (28) are identities.

Therefore, next Lemma is obvious.

Lemma 3 Ki[K,L], Li[K,L], and Yi[K,L], i = 1, 2 are differentiable with respect
to (K,L) if (13) is true for (K,L) ∈ R2

++.

We can make a conjecture that assuming (13) is equivalent to assuming that the
Jacobian determinant of the systems of Kuhn Tucker condition does not vanish. We,
however, avoid getting involved with this problem.

4.3 Linear homogeneity, monotonicity, and concavity of F

Let ((ω∗, (p∗i )
2
i=1), (Y

∗
i , K

∗
i , L

∗
i )

2
i=1) be the temporary equilibrium of a Uzawa-economy

((K,L), (Fi)
2
i=1, (αi)

2
i=1). Let t be an arbitrary positive real. Then a pair of the price
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vector and the allocation ((ω∗, (p∗i )
2
i=1), (tY

∗
i , tK

∗
i , tL

∗
i )

2
i=1) is a temporary equilibrium

of a Uzawa-economy ((tK, tL), (Fi)
2
i=1, (αi)

2
i=1). Thus we acquire

F (tK, tL) =

(
F1(tK

∗
1 , tL

∗
1)

α1

)α1
(
F2(tK

∗
2 , tL

∗
2)

α2

)α2

= tF (K,L).

We are to show that F is monotonously increasing. Let X = (K,L) and X ′ =
(K ′, L′) be two pairs of positive factor endowments satisfying X ≦ X ′ and X ̸=
X ′. Let (Y1[X], Y2[X]) be a vector of two products in the temporary equilibrium
associating with the Uzawa-economy (X, (Fi)

2
i=1, (αi)

2
i=1). In the same way, we have

(Y1[X
′], Y2[X

′]) for the Uzawa-economy (X ′, (Fi)
2
i=1, (αi)

2
i=1). Then A(X) ⊊ A(X ′)

since X ≦ X ′ and X ̸= X ′. This implies by (16) that

F (X) < F (X ′).

And thus, F is strictly increasing with respect to (K,L) ∈ R2
++.

We can summarize these as follows:

Theorem 4 The function F defined by (26) is monotonous and homogenous of degree
one.

We show the concavity of the function F in the next theorem.

Theorem 5 The function F is concave with respect to X = (K,L) ∈ R2
++.

The proof of this theorem is relegated to Appendix. A concave function is differentiable
except points of measure zero of the domain.2 This implies that assuming (13) is fairly
weak.

5 Aggregation Possibility Theorems

Let ((K,L), (Fi)
2
i=1, (αi)

2
i=1) be a Uzawa-economy. Let ω be a positive real. By the

discussions made previously, we have functions ki(ω), pi(ω) = 1/f ′
i(ki(ω)), Yi(ω), Li(ω),

Ki(ω), i = 1, 2, and total factor demand functions for factors L(ω), K(ω).
Now, we introduce a concept of trivial equilibrium.

2See Theorem 25.5 in Rockafellar(1970, page 246).
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Theorem 6 Let ω be an arbitrary positive wage-rental ratio. Let (ω, (pi(ω))
2
i=1) and

(Yi(ω), Ki(ω), Li(ω))
2
i=1 be a pair of price vector and production vectors in the Uzawa-

economy ((K,L), (Fi)
2
i=1, (αi)

2
i=1). Define (K̄, L̄) = (K1(ω) + K2(ω), L1(ω) + L2(ω)).

Then the pair (
(ω, (pi(ω))

2
i=1), (Yi(ω), Ki(ω), Li(ω))

2
i=1

)
is a temporary equilibrium in a new Uzawa-economy ((K̄, L̄), (Fi)

2
i=1, (αi)

2
i=1). This

temporary equilibrium is said to be a “trivial equilibrium”. A trivial equilibrium is a
solution to the problem (16) when (K,L) = (K̄, L̄).

The proof is relegated to Appendix.
Theorem 6 is not trivial as it seems but is very important. Let us show its pow-

erfulness. The equation (12) and the definition of F imply that the condition (b)
holds locally at the temporary equilibrium of the Uzawa-economy. Here, Theorem 6
states that ((ω, (pi(ω))

2
i=1), (Yi(ω), Ki(ω), Li(ω))

2
i=1) is also a temporary equilibrium

of a Uzawa-economy ((K(ω), L(ω)), (Fi)
2
i=1, (αi)

2
i=1).

And by (12) and (25), we have

p(ω)F (K(ω), L(ω)) = p1(ω)F1(K1(ω), L1(ω)) + p2(ω)F2(K2(ω), L2(ω)). (30)

This equality holds for any positive ω. Then, the condition (b) in Definition 3 holds.
Now, we assume following Assumption 2.3

Assumption 2 The solution to the problem (16) is differentiable with respect to the
parameter (K,L) ∈ R2

++.

Lemma 4 Under Assumption 2, the condition (a) in Definition 3 holds locally. In
other words, let ((ω∗, (pi(ω

∗)2i=1), (Y ∗
i , K

∗
i , L

∗
i )

2
i=1) be the temporary equilibrium of a

Uzawa-economy ((K,L), (Fi)
2
i=1, (αi)

2
i=1). Then, following property (aL) is true.

(aL) Define p(ω∗) = (p1(ω
∗))α1(p2(ω

∗))α2. Then (K,L) is a solution to the problem:

max
K̃,L̃

p(ω∗)F (K̃, L̃)− K̃ − ω∗L̃.

Proof of Lemma 4 is given in Appendix.

We are fully equipped to show that the condition (a) in Definition 3 holds. Let ω
be a positive real. Define (K̄, L̄) = (K(ω), L(ω)). We can construct a Uzawa-economy

3We can dispense with this assumption if the Jacobian of the simultaneous equations (17), (18),
(19), (20), (21) does not vanish or if we assume (13), which is the sufficient condition in Lemma 3.
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((K̄, L̄), (Fi)
2
i=1, (αi)

2
i=1). By Theorem 6, the pair ((ω, (pi(ω))

2
i=1), (Yi(ω), Ki(ω), Li(ω))

2
i=1)

is the trivial equilibrium in the new Uzawa-economy. And thus, we can apply Lemma
4 to the trivial equilibrium. This implies the condition (a) in Definition 3 holds if p(ω)
is determined by (25).

We have already established the condition (b) in Definition 3 when p(ω) is deter-
mined by (25). By these, we have the following theorem.

Theorem 7 (Aggregation Possibility Theorem I) Define a function F and a price
of aggregated commodity p(ω) by (26) and (25) respectively. Under Assumption 2, the
functions p(ω) and F satisfy conditions (a) and (b) in Definition 3. That is, p(ω) is
the price of aggregated commodity. And F is an aggregate production function.

Furthermore, we have by (30):

p(ω)F (K(ω), L(ω)) = K(ω) + ωL(ω). (31)

Of course, the equality (31) holds when ω = ω∗. Therefore, the condition (c) in
Definition 4 holds. Furthermore, profit maximization of aggregate production under
prices (ω∗, p(ω∗)) is attained at (K,L) by Lemma 4. This implies that ((ω∗, p(ω∗)),
(Y ∗, K, L)) is a Solow equilibrium. This is nothing but the condition (d) in Definition
4.

These results are summarized up in the following theorem.

Theorem 8 (Aggregation Possibility Theorem II) Define a function F and a
price of aggregated commodity p(ω) by (26) and (25) respectively. Under Assumption
2, the Uzawa-economy ((K,L), (Fi)

2
i=1, (αi)

2
i=1) is aggregated into the Solow-economy

((K,L), F ).

A set of Theorems 7 and 8 is an affirmative answer to the aggregation of the
Uzawa-economy into the Solow-economy.

6 Concluding Remarks

In this paper, we have shown that the temporary equilibrium of a Uzawa economy can
be aggregated into that of Solow economy successfully.

Our scope is, however, restrictive in following two respects. One is whether the
aggregation of the current two-sector model into the one-sector model can be extended
to the aggregation from the n-sector model to the one-sector model. This point can
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be easily resolved by extending this paper. Let us consider an n-sector economy
where the i-th sector has a neoclassical production function Fi(Ki, Li), i = 1, 2, . . . , n.
Let positive constant αi be a coefficient of expenditure to i-th sector, i = 1, 2, . . . , n
satisfying

∑n
i=1 αi = 1. Suppose that a temporary equilibrium of n-sector model

((ω∗, (p∗i )
n
i=1), (Y

∗
i , K

∗
i , L

∗
i )

n
i=1) exists. Then we can show that a pair

p =
n∏

i=1

(p∗i )
αi , F (K,L) =

n∏
i=1

(
Fi(K

∗
i , L

∗
i )

αi

)αi

is an aggregate pair of aggregated economy.
Another point is whether the aggregation procedure obtained in the present paper

can be applies to dynamic paths. The two-sector model of this paper, which focuses
on temporary equilibrium, does not describe the accumulation of capital. As in the
usual Uzawa two-sector model, the first sector produces the investment goods and
the second sector the consumption goods. Then the supply and demand balance of
products of first sector describes the dynamic path. In this case, the expenditure
coefficient α1 is nothing but the savings rate s. An important issue that arises at this
time is the following. Let Y be a temporal national income measured by wages which
is identical in both economies. The amount of saving is sY which is also identical in
two economies. Therefore, we ca see that

investment in two sector economy = K̇ =
sY

p1

investment in aggregate economy = K̇ =
sY

p1sp21−s
.

This means that the dynamic path may be different in two economies, that is, that
we need develop the more sophisticated procedure for aggregation of economy which
is consistent not only temporarily but also dynamically.
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7 Mathematical Appendix

A.1 Proof of Lemma 1
Assume that F is a function satisfying Assumption 1. Let P be a set {(y,K, L) ∈
R3

+ | y ≦ F (K,L) }. P is a closed convex cone, since Fi is continuous, linearly ho-
mogenous, and concave. Let ∂P be a set of the boundary points in P production level
of which is positive. Suppose that there exists a line segment on ∂P such that its
extended line does not pass through the origin. Let ξ̄ = (ȳ, K̄, L̄), ξ̂ = (ŷ, K̂, L̂) ∈ R3

++

be two distinct points on the segment. Since the line {µ(ŷ, K̂, L̂) |µ > 0} is on ∂P .
There exists µ > 0 such that µŷ = ȳ. We can assume without loss of generality
that µ = 1. It is also obvious that (K̂, L̂) ̸= (K̄, L̄) and that the segment is on ∂P .
Define (K(λ), L(λ)) = λ(K̄, L̄) + (1 − λ)(K̂, L̂) for 0 ≦ λ ≦ 1. Clearly, it holds
that ȳ = F (K(λ), L(λ)) and that the point (ȳ, K(λ), L(λ)) is on ∂P . This implies
that {(K(λ), L(λ)) | 0 ≦ λ ≦ 1} is on an isoquant associating with ȳ. This, however,
is impossible since the the second derivative along the isoquant is negative, i.e., the
marginal rate of substitution is strictly decreasing by A3 in Assumption 1. This im-
plies that there are no line segments on ∂P such that its extended line does not pass
through the origin.

A.2 Proof of Theorem 1
By (3′) and the definitions of Li(ω) and Ki(ω) in (9), we can rewrite the condition

(b) in Definition 3 as follows:

p(ω)F (K(ω), L(ω)) = p1(ω)F1(K1(ω), L1(ω)) + p2(ω)F2(K2(ω), L2(ω))

= K + ωL.

Since F is linearly homogenous, the left hand side is identical with p(ω)f(k(ω))L(ω).
Therefore the condition (b) is expressed by

p(ω)f(k(ω)) = (k + ω)
L

L(ω)
= (k + ω)

1∑2
i=1 αi

k+ω
ki(ω)+ω

.

Furthermore the condition (a) leads us to the conclusion that (K(ω), L(ω)) is an inner
solution to the profit maximizing problem. Since p(ω) = 1/f ′(k(ω)), the condition (b)
is rearranged further to

f ′(k(ω))

f(k(ω))
=

2∑
i=1

αi

ki(ω) + ω
= α1

f ′
1(k1(ω))

f1(k1(ω))
+ α2

f ′
2(k2(ω))

f1(k2(ω))

1

k(ω) + ω
=

α1

k1(ω) + ω
+

α2

k2(ω) + ω
. (32)
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Applying (7) to each term in (32), we have

log(k(ω) + ω)− log f(k(ω)) + C =
2∑

i=1

αi (log(ω + ki(ω))− log fi(ki(ω)) + Ci)

where C,Ci, i = 1, 2 are integral constants. And thus we know:

log f(k(ω)) = log (f1(k1(ω))
α1f2(k2(ω)

α2) + log
ω + k(ω)

(ω + k1(ω))α1(ω + k2(ω))α2
+ C.

Let the integral constant C be zero, which means a suitable choice of unit of K or
L. Here we focus our attention on equilibria. It holds that k(ω∗) = k in equilibrium.
Making use of (11), we can rewrite the second term in the right hand side as follows.

the second term in RHS |ω=ω∗ = log

(
ω∗ + k(ω∗)

ω∗ + k1(ω∗)

)α1
(
ω∗ + k(ω∗)

ω∗ + k2(ω∗)

)α2

= log

(
ω∗ + k

ω∗ + k1(ω∗)

)α1
(

ω∗ + k

ω∗ + k2(ω∗)

)α2

= log

(
L1(ω

∗)

α1L

)α1
(
L2(ω

∗)

α2L

)α2

= log
(L1(ω

∗)/α1)
α1 (L2(ω

∗)/α2)
α2

L
.

Substitute this relation to the original equality and we have for ω = ω∗

log f(k)L = log

[(
f1(k1(ω

∗))L1(ω
∗)

α1

)α1
(
f2(k2(ω

∗))L2(ω
∗)

α2

)α2
]
.

Finally, this implies

f(k) =

(
f1(k1(ω

∗))ρ1(ω
∗)

α1

)α1
(
f2(k2(ω

∗))ρ2(ω
∗)

α2

)α2

,

F (K,L) =

(
F1(K

∗
1 , L

∗
1)

α1

)α1
(
F2(K

∗
2 , L

∗
2)

α2

)α2

.

Note that F (K,L) = f(K/L)L in the second equation. And thus, we obtain the
desired conclusion.

A.3 Proof of Theorem 2
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Proof of (i). Let ((ω∗, (p∗i )
2
i=1), (Y

∗
i , K

∗
i , L

∗
i )

2
i=1) be a Uzawa temporary equilibrium.

By (22) and (23), two equalities in Kuhn-Tucker condition (18), (19) hold:

λi
∂Fi

∂Ki

(K∗
i , L

∗
i )− µ =

1

p∗

(
p∗i
∂Fi

∂Ki

(K∗
i , L

∗
i )− 1

)
= 0,

λi
∂Fi

∂Li

(K∗
i , L

∗
i )− δ =

1

p∗

(
p∗i
∂Fi

∂Li

(K∗
i , L

∗
i )− ω∗

)
= 0.

Equalities (20) and (21) hold obviously. The equilibrium of commodity i enables us
to know:

αi

(
Y ∗
1

α1

)α1
(
Y ∗
2

α2

)α2

− λiY
∗
i =

1

p∗

(
αi

(
p∗1Y

∗
1

α1

)α1
(
p∗2Y

∗
2

α2

)α2

− p∗iY
∗
i

)
=

1

p∗
(αi(K + ω∗L)− p∗iY

∗
i ) = 0.

Therefore we have

αi

(
Y ∗
1

α1

)α1−1(
Y ∗
2

α2

)α2

Y ∗
i

− λi = 0, i = 1, 2.

This implies that the first assertion in (i) holds. Finally, the allocation (Y ∗
i , K

∗
i , L

∗
i )

2
i=1

satisfying the Kuhn-Tucker condition (17), (18), (19), (20), and (21) is a solution to
the problem (16) by Magasarian (1969, Theorem 7.2.1). This is the second assertion
in (i).

Proof of (ii). Let ((λ1, λ2, µ, δ), (y
∗∗
i , K

∗∗
i , L

∗∗
i )2i=1) be a solution to Kuhn-Tucker condi-

tion associating to (16). Note that these variables are positive. We define ω∗, p∗i , i =
1, 2 by (24). Since p∗i × µ = λi, i = 1, 2, the relations (18), (19) are respectively
rearranged to

p∗i
∂Fi

∂Ki

(K∗∗
i , L

∗∗
i ) = 1, p∗i

∂Fi

∂Li

(K∗∗
i , L

∗∗
i ) = ω∗.

This implies that (K∗∗
i , L

∗∗
i ) is a profit maximizer of the producer i when prices are

(ω∗, p∗i ). Factor markets are in balance because (21) holds. Let us consider the com-
modity markets. By (17), we have(

y∗∗1
α1

)α1
(
y∗∗2
α2

)α2

= λi
y∗∗i
αi

, i = 1, 2.
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This equality implies 1 =
∏2

i=1 λ
αi
i . By the definitions of ω∗ and p∗i , i = 1, 2 in (24) we

can obtain µ−1 =
∏2

i=1 (p
∗
i )

αi . Furthermore, by (20) we have:

y∗∗i = Fi(K
∗∗
i , L

∗∗
i ) =

∂Fi

∂Ki

(K∗∗
i , L

∗∗
i )K∗∗

i +
∂Fi

∂Li

(K∗∗
i , L

∗∗
i )L∗∗

i .

By (24), we have known that p∗i = λi/µ and µ−1 =
∏2

i=1 (p
∗
i )

αi . Multiplying both sides
of (17) by

∏2
i=1 (p

∗
i )

αi (= µ−1), we have

αi

(
p∗1y

∗∗
1

α1

)α1
(
p∗2y

∗∗
2

α2

)α2

= p∗i y
∗∗
i , i = 1, 2. (33)

Add up above equalities with respect to i and we obtain(
p∗1y

∗∗
1

α1

)α1
(
p∗2y

∗∗
2

α2

)α2

= p∗1y
∗∗
1 + p∗2y

∗∗
2 = K + ω∗L.

We can substitute this into the same term in (33). And taking (20) into account, we
finally arrive at a conclusion:

αi (K + ω∗L) = p∗i y
∗∗
i = p∗iFi(K

∗∗
i L

∗∗
i ), i = 1, 2.

This implies that two commodity markets are in balance. And thus, a pair of prices
and allocation

(
(ω∗, (p∗i )

2
i=1), (y

∗∗
i , K

∗∗
i , L

∗∗
i )

)
is the Uzawa temporary equilibrium.

A.4 Proof of Theorem 3
Let (y∗∗i , K

∗∗
i , L

∗∗
i )2i=1 be a solution to the maximization problem (16). Note that

(y∗∗1 , y
∗∗
2 ) is in A(y). Defining g(y1, y2) =

(
y1
α1

)α1
(

y2
α2

)α2

, we simplify the maximization

problem as follows:

max g(y1, y2) subject to (y1, y2) ∈ A(y).

The solution to this problem is unique and is identical with (y∗∗1 , y
∗∗
2 ). Therefore,

any solution (y∗i , K
∗
i , L

∗
i )

2
i=1 to the problem (16) satisfies (y∗∗1 , y

∗∗
2 ) = (y∗1, y

∗
2). Let

(y∗∗i , K
∗∗
i , L

∗∗
i )2i=1 and (y∗∗i , K

∗
i , L

∗
i )

2
i=1 be two solutions to (16). Suppose that two factor

allocations (K∗
i , L

∗
i )

2
i=1 and (K∗∗

i , L
∗∗
i )2i=1 were in a relation that

∃i ∀µi ∈ R++ such that (K∗
i , L

∗
i ) ̸= µi(K

∗∗
i , L

∗∗
i ). (34)

Because of convexity of A(K,L), it holds that

(K#
i , L

#
i )

2
i=1 =

(
K∗∗

i +K∗
i

2
,
L∗∗
i + L∗

i

2

)2

i=1

∈ A(K,L).
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Defining y#i = Fi(K
#
i , L

#
i ), i = 1, 2, we have

g(y#1 , y
#
2 ) ≧ g(y∗∗1 , y

∗∗
2 )

because g is a concave function. The fact that (y∗∗i , K
∗∗
i , L

∗∗
i )2i=1 is a solution to the

problem (16) leads us to another fact that (y#i , K
#
i , L

#
i )

2
i=1 is a solution to (16). In

addition to this the equality g(y#1 , y
#
2 ) = g(y∗∗1 , y

∗∗
2 ) holds. This is a contradiction to

Lemma 1. Therefore, the negation of (34) holds. That is,

∀i ∃µi ∈ R++ and (K∗
i , L

∗
i ) = µi(K

∗∗
i , L

∗∗
i ).

Then µi = 1 holds since y∗∗i = Fi(K
∗
i , L

∗
i ) = Fi(K

∗∗
i , L

∗∗
i ), i = 1, 2. This implies

(y∗∗i , K
∗∗
i , L

∗∗
i )2i=1 = (y∗∗i , K

∗
i , L

∗
i )

2
i=1.

This establishes the uniqueness of the solution to the problem(16).

A.5 Proof of Theorem 5
First, we make sure of a following basic result. Let us define a function g(z1, z2) =
z1

α1z2
α2 , (z1, z2) ∈ R2

+. Clearly, g is concave. This implies that for any z = (z1, z2),
z′ = (z′1, z

′
2) ∈ R2

+ the inequality g(z/2 + z′/2) ≧ 1
2
g(z) + 1

2
g(z′) holds. That is,

2∏
i=1

(
zi
2
+
z′i
2

)αi

≧ 1

2

2∏
i=1

zi
αi +

1

2

2∏
i=1

z′i
αi . (35)

We pick two vectors X = (K,L), X ′ = (K ′, L′) arbitrarily in R2
++. For symbolic

simplicity, we write

Kx
i = Ki[X], Lx

i = Li[X], Kx′
i = Ki[X

′], Lx′
i = Li[X

′], i = 1, 2.

It is obvious that
∑2

i=1(K
x
i +K

x′
i , L

x
i +L

x′
i ) ≦ X+X ′. Then (Kx

i +K
x′
i , L

x
i +L

x′
i )

2
i=1 ∈

A(X +X ′). By (16), we know that

2∏
i=1

(
Fi(Ki[X +X ′], Li[X +X ′])

αi

)αi

≧
2∏

i=1

(
Fi(K

x
i +Kx′

i , L
x
i + Lx′

i )

αi

)αi

. (36)

Since Fi(·, ·) is homogenous of degree one and concave, then next inequality holds.

Fi(K
x
i +Kx′

i , L
x
i + Lx′

i ) = 2Fi(K
x
i /2 +Kx′

i /2, L
x
i /2 + Lx′

i /2)

≧ 2

(
1

2
Fi(K

x
i , L

x
i ) +

1

2
Fi(K

x′
i , L

x′
i )

)
.
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This together with (35) implies

2∏
i=1

(
Fi(K

x
i +Kx′

i , L
x
i + Lx′

i )

αi

)αi

≧ 2
2∏

i=1

(
1

2

Fi(K
x
i , L

x
i )

αi

+
1

2

Fi(K
x′
i , L

x′
i )

αi

)αi

≧
2∏

i=1

(
Fi (K

x
i , L

x
i )

αi

)αi

+
2∏

i=1

(
Fi(K

x′
i , L

x′
i )

αi

)αi

.

The above inequality and (36) imply

F (X +X ′) ≧ F (X) + F (X ′).

In addition to this F is homogenous of degree one. Then F is a concave function.

A.6 Proof of Theorem 6
To distinguish two Uzawa-economies, we write Uzawa-economies ((K,L), (Fi)

2
i=1, (αi)

2
i=1)

and ((K̄, L̄), (Fi)
2
i=1, (αi)

2
i=1) as U0 and U1, respectively. First, we note that the capital

labor ratios ki(ω), i = 1, 2 in U1 are identical with those in U0, since Fi’s are common
in two economies. Second, let us consider the equilibrium of commodity markets. By
(3′) and the Euler’s theorem on Fi in U0, it holds that

Ki(ω) + ωLi(ω) = pi(ω)fi(ki(ω))Li(ω) = αi(K + ωL), i = 1, 2.

Adding these up with respect to i leads us to K̄ + ωL̄ = K(ω) + ωL(ω) = K + ωL.
This fact leads us to

pi(ω)fi(ki(ω))Li(ω) = αi(K̄ + ωL̄), i = 1, 2.

This implies that the demand for labor and capital of the i-th sector in U1 are identical
with Li(ω) and Ki(ω) in U0, i = 1, 2. And thus in U1 two factor markets are in balance
at ω. Then the pair of price and allocation (((pi(ω))

2
i=1, ω), (Yi (ω), Ki(ω), Li(ω))

2
i=1)

is an equilibrium in U1. The second assertion holds obviously.

A.7 Proof of Lemma 4
Let Yi[K,L], Ki[K,L], Li[K,L], i = 1, 2 be the solution to the problem (16). Of course,
Yi[K,L] = Fi(Ki[K,L], Li[K,L]) is true, i = 1, 2. We express functions in this way
by using blackbracketsets to distinguish those in Section 4.1 from those in Section
2. For the simplicity of expression, we write pi = pi(ω

∗), i = 1, 2, p = (p1)
α1(p2)

α2 ,
Yi = Yi[K,L], i = 1, 2. From Theorems 2 and 3, mutual relations among variables are:

λi =
pi
p
, i = 1, 2, µ =

1

p
, δ =

ω∗

p
,

Yi = Yi[K,L] = Y ∗
i , Ki[K,L] = K∗

i , Li[K,L] = L∗
i , i = 1, 2.
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Let us show the marginal conditions ∂F/∂K = 1/p and ∂F/∂L = ω∗/p to establish
(aL). Our first step is (17), i.e.,

αi

(
Y1

α1

)α1
(

Y2

α2

)α2

Yi
=
pi
p
.

Multiplying both sides of the above equation by ∂Fi/∂Ki(K
∗
i , L

∗
i ) or ∂Fi/∂Li(K

∗
i , L

∗
i ),

we obtain

by (18), αi

(
Y1

α1

)α1
(

Y2

α2

)α2

Yi

∂Fi

∂Ki

=
pi
p

∂Fi

∂Ki

=
1

p
, (37)

by (19), αi

(
Y1

α1

)α1
(

Y2

α2

)α2

Yi

∂Fi

∂Li

=
pi
p

∂Fi

∂Li

=
ω∗

p
. (38)

On the other hand, equalities:

K1[K,L] +K2[K,L] = K, L1[K,L] + L2[K,L] = L

are identities. Then we obtain:

∂K1

∂K
[K,L] +

∂K2

∂K
[K,L] = 1,

∂L1

∂K
[K,L] +

∂L2

∂K
[K,L] = 0.

By these equations, we have

2∑
i=1

αi

(
Y1

α1

)α1
(

Y2

α2

)α2

Yi

∂Fi

∂Ki

∂Ki

∂K
=

1

p
,

2∑
i=1

αi

(
Y1

α1

)α1
(

Y2

α2

)α2

Yi

∂Fi

∂Li

∂Li

∂K
=
ω∗

p

2∑
i=1

∂Li

∂K
= 0.

Adding up these two equation leads us to:

1

p
=

2∑
i=1

αi

(
Y1

α1

)α1
(

Y2

α2

)α2

Yi

(
∂Fi

∂Ki

∂Ki

∂K
+
∂Fi

∂Li

∂Li

∂K

)

=
2∑

i=1

αi

(
F1(K1(X),L1(X))

α1

)α1
(

F2(K2(X),L2(X))
α2

)α2

Ȳi

(
∂Fi

∂Ki

∂Ki

∂K
+
∂Fi

∂Li

∂Li

∂K

)
=
∂F

∂K
(K,L), (39)
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where X = (K,L). It may be a little bit repetitive, we show another marginal condi-
tion. Next equalities are also obvious.

∂K1

∂L
[K,L] +

∂K2

∂L
[K,L] = 0,

∂L1

∂L
[K,L] +

∂L2

∂L
[K,L] = 1.

This together with (37) and (38) implies

∂F

∂L
(K,L) =

2∑
i=1

αi

(
Y1

α1

)α1
(

Y2

α2

)α2

Yi

(
∂Fi

∂Ki

∂Ki

∂L
+
∂Fi

∂Li

∂Li

∂L

)

=
2∑

i=1

(
pi
p

∂Fi

∂Ki

∂Ki

∂L
+
pi
p

∂Fi

∂Li

∂Li

∂L

)
=

2∑
i=1

(
1

p

∂Ki

∂L
+
ω∗

p

∂Li

∂L

)
=
ω∗

p
. (40)

This is the second marginal condition for maximization problem in (aL). The pair (39)
and (40) constitutes a sufficient condition for maximization problem in (aL), since F
is a concave function.
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